Spread the love

What is CERN’s mission? At CERN, our work helps to uncover what the universe is made of and how it works. We do this by providing a unique range of particle accelerator facilities to researchers, to advance the boundaries of human knowledge.

 

The European Organization for Nuclear Research, known as CERN (/sɜːrn/French pronunciation: ​[sɛʁn]Conseil Européen pour la Recherche Nucléaire), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Geneva, on the France–Switzerland border. It comprises 23 member states,[4] and Israel (admitted in 2013) is currently the only non-European country holding full membership.[5][6] CERN is an official United Nations General Assembly observer.[7]

The acronym CERN is also used to refer to the laboratory; in 2019, it had 2,660 scientific, technical, and administrative staff members, and hosted about 12,400 users from institutions in more than 70 countries.[8] In 2016, CERN generated 49 petabytes of data.[9]

CERN’s main function is to provide the particle accelerators and other infrastructure needed for high-energy physics research — consequently, numerous experiments have been constructed at CERN through international collaborations. CERN is the site of the Large Hadron Collider (LHC), the world’s largest and highest-energy particle collider.[10] The main site at Meyrin hosts a large computing facility, which is primarily used to store and analyze data from experiments, as well as simulate events. As researchers require remote access to these facilities, the lab has historically been a major wide area network hub. CERN is also the birthplace of the World Wide Web.[11][12]

 

 

 

CERN is the European laboratory for particle physics located near Geneva in Switzerland. If you see a news headline about exotic new subatomic particles, the chances are the discovery was made at CERN. A recent example occurred in January 2022, when CERN scientists announced “evidence of X particles in the quark-gluon plasma produced in the Large Hadron Collider (LHC)”, according to MIT News(opens in new tab).

Hiding behind that technobabble is the eye-popping fact that CERN had succeeded in re-creating a situation that hasn’t occurred naturally since a few microseconds after the Big Bang. That particular study drew on pre-existing data from the LHC.